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Abstract

We discuss the determination of the intergalactic pair-production absorption coeffi-

cient as derived by Stecker and De Jager by making use of a new empirically based

calculation of the spectral energy distribution of the intergalactic infrared radiation

field as given by Malkan and Stecker. We show that the results of the Malkan and

Stecker calculation agree well with recent data on the infrared background. We then

show that Whipple observations of the flaring 7-ray spectrum of Mrk 421 hint at

extragalactic absorption and that the HEGRA observations of the flaring spectrum

of Mrk 501 appear to strongly indicate extragalactic absorption. We also discuss

the determination of the 7-ray opacity at higher redshifts, following the treatment

of Saiamon and Stecker. We give a predicted spectrum, with absorption included

for PKS 2155-304. This XBL lies at a redshift of 0.12,the highest redshift source

yet observed at an energy above 0.3 TeV. This source should have its spectrum

steepened by ,,_ 1 in its spectral index between ,,- 0.3 and ,,_ 3 TeV and should show

an absorption cutoff above ,,_ 6 TeV.

Key words: gamma-rays; BL Lac objects; gamma-ray bursts; background
radiation; infrared

1 Introduction

Very high energy 7-ray beams from blazars can be used to measure the inter-

galactic infrared radiation field, since pair-production interactions of "r-rays

with intergalactic IR photons will attenuate the high-energy ends of blazar

spectra [1]. In recent years, this concept has been used successfully to place
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upper limits on the the intergalactic IR field (IIRF) [2] - [6]. Determining the

IIRF, in turn, allows us to model the evolution of the galaxies which produce

it. As energy thresholds are lowered in both existing and planned ground-

based air Cherenkov light detectors [7], cutoffs in the "),-ray spectra of more

distant blazars are expected, owing to extinction by _:he IIRF. These can be

used to explore the redshift dependence of the IIRF [3,], [9].

There are now 66 grazars which have been detected by the EGRET team [11].

These sources, optically violent variable quasars and BL Lac objects, have

been detected out to a redshift greater that 2. Of all of the blazars detected

by EGRET, only the low-redshift BL Lac, Mrk 421 (z = 0.031), has been

seen by the Whipple telescope [12]. The fact that the Whipple team did not

detect the much brighter EGRET source, 3C279, at TeV energies [13], [14]

is consistent with the predictions of a cutoff for a source at its much higher

redshift of 0.54 [1]. So too is .the recent observation of three other very close BL

Lacs (z < 0.05), v/z., Mrk 501 /z = 0.034) [15], 1ES2344+514 (z = 0.044)[16],

and PKS 2155-304 (z = 0.117) [17] which were too faint at GeV energies to
be seen by EGRET 1 .

2 The Opacity of Intergalactic Space to the IIRF

The formulae relevant to absorption calculations involving pair-production are

given and discussed in Ref. [1]. For 7-rays in the TeV energy range, the pair-

production cross section is maximized when the soft l:hoton energy is in the

infrared range:

A(E_) __ A_2m_c2 - 2.4E_,T,V #rn (1)

where A_ = h/(m_c) is the Compton wavelength of the electron. For a 1 TeV

")'-ray, this dorresponds to a soft photon having a wavelength near the K-band

(2.2#m). (Pair-production interactions actually take place with photons over

a range of wavelengths around the optimal value as determined by the energy

dependence of the cross section; see eq. (6)).) If the emission spectrum of an

extragalactic source extends beyond 20 TeV, then the extragalactic infrared

field should cut off the observed spectrum between -_ 23 GeV and _ 20 TeV,

depending on the redshift of the source [8], [9].

m

1 PKS 2155-304 was seen in one observing period by EG_ET as reported in the

Third EGRET Catalogue [11]
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Fig. 1. The spectral energy distribution (SED) of the extragalctic IR radiation

calculated by Malkan and Stecker [18] with the 2.7 K cosmic background radiation

spectrum added. The solid lin_ (lower IIRF curve) and the dashed line (higher IIRF

curve) correspond to the middle and upper curves calculated by Malkan and Stecker

with redshift-evolution assumptions as described in the text.

3 Absorption of Gamma-Rays at Low Redshifts

Stecker and De Jager [10] (hereafter SD98) have recalculated the absorption

coefficient of intergalactic space using a new, empirically based calculation of

the spectral energy distribution (SED) of intergalactic low energy photons by

Malkan and Stecker [18] (hereafter MS98) obtained by integrating luminosity

dependent infrared spectra of galaxies over their luminosity and.redshift dis-

tributions. After giving their results on the -),-ray optical depth as a function

of energy and redshift out to a redshift of 0.3, SD98 applied their calculations

by comparing their results with the spectral data on Mrk 421 [19] and spectral

data on Mrk 501 [20].

SD98 make the reasonable simplifying assumption that the IIRF is basically

in place at a redshifts < 0.3, having been produced primarily at higher red-

shifts [8], [9], [21], Therefore SD98 limited their calculations to z < 0.3. (The

calculation of 7-ray opacity at higher redshifts [8],[9] will be discussed in the

next section.)

SD98 assumed for the IIRF, two of the SEDs given in MS98 [18] (shown in

Figure 1). The lower curve in Figure 1 (adapted from MS98) assumes evolution

out to z = 1, whereas the upper curve assumes evolution out to z = 2.

Evolution in stellar emissivity is expected to level off or decrease at redshifts

greater than ,_ 1.5 [21]-[24] so that the two curves in Fig. 1 may be considered

to be lower and upper limits, bounding the expected IR flux. Using these

two SEDs for the IIRF, SD98 obtained parametric expressions for r(E, z) for

z < 0.3, taking a Hubble constant of Ho = 65 km s-lMpc -1 [30].
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Fig. 2. The upper infrared SED from Malkan and Stecker compared with observa-

tional data and other constraints (courtesy O.C. De Jager).

The results of MS98 [18] generally agree well with very recent COBE data. 2

and with lower limits from galaxy counts and other considerations [25] - [29].

The results of MS are also in agreement with upper limits obtained from TeV

7-ray studies [2] - [6]. This agreement is illustrated in Figure 2 which shows

the upper SED curve from MS98 in comparison with _axious data and limits.

The double-peaked form of the SED of the IIRF requires a 3rd order poly-

nomial to approximate the opacity r in a parametric: form. SD98 give the

following approximation:

3

togio[v(ET, v, z)] _ _-_ai(z)(logloEwev) _ for 1 0 < Ewev < 50,
i=0

(2)

where the z-dependent coefficients axe given by

2

a,(z)- _ a,j(logz0 z)/. (3)
j=0

Table 1 gives the numerical values for aij, with i = 0, 1,2,3, and j = 0, 1,2.

The numbers before the brackets are obtained using the lower IIRF SED shown

in Figure 1; The numbers in the brackets are obtained using the higher IIRF

SED. Equation (2) approximates r(E, z) to within 10% for all values of z and

E considered.

2 The derived COBE point at 140 #m appears to be inconsL';tent with all calculated

IRRF SEDs. It is also inconsistent with the spectrum of Mrk 501 (Konopelko, these

proceedings), since it would imply a 7-ray optical depth ,,, 6 at 20 TeV.
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Fig. 3. Optical depth versus energy for 7-rays originating at various redshifts ob-

tained using the SEDs corresponding to the lower IIRF (solid lines) and higher IIRF

(dashed lines) levels shown in'Fig. 1 (from SD98).

J

0 1.11(1.46)

1 1.15(1.46)

2 0.00(0.15)

Table 1: Polynomial coefficients aij

aoj alj a2j a3j

-0.26(0.10)

-1.24(-1.03)

-0.41(-0.35)

1.17(0.42)

2.28(1.66)

0.78(0.58)

-0.24(0.07)

-0.88(-0.56)

-0.31(-0.20)

Figure 3 shows the results of the SD98 calculations of the optical depth for

various energies and redshifts up to 0.3.

Figure 4 shows observed spectra for Mrk 421 [19] and Mrk 501 [20] in the flaring

phase, compared with best-fit spectra of the form KE -r exp(-r(E, z -- 0.03)),

with r(E, z) given by the two appropriate curves shown in Figure 2. Because

r < 1 for E < 10, TeV, there is no obvious curvature in the differential

spectra below this energy; rather, we obtain a slight steepening in the power-

law spectra of the sources as a result of the weak absorption. This result

implies that the intrinsic spectra of the sources should be harder by 5F ,-_

0.25 in the lower IRRF case, and -_ 0.45 in the higher IIRF case.

The SD98 results for the absorption coeeficient as a function of energy do not

differ dramatically from those obtained previously [31], [32]; however, they are

more reliable because they are based on the empirically derived IIRF given by

MS98, whereas all previous calculations of TeV _/-ray absorption were based

5
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Fig. 4. The observed spectra of Mrk 421 (open triangles) [19] and Mrk 501 (solid

circles - spectrum divided by 10) [20]. Best-fit absorbe] spectra (of the form

KE-rexp(-r(E,z = 0.03)))" and unabsorbed spectra (/,.'E -r) for both sources

are shown for r corresponding to the lower IIRF SED (solid lines; r = 2.36 and 2.2

for Mrk 421 and Mrk 501 respectively) and higher IIRF SED (dashed lines; r = 2.2

and 2.03 for Mrk 421 and Mrk 501 respectively) (from SD¢,_8).

on theoretical modeling of the IIRF. The MS98 calculation Was based on

data from nearly 3000 IRAS galaxies. These data incluied (1) the luminosity

dependent infrared SEDs of galaxies, (2) the 60_um laminosity function of

galaxies and, (3) the redshift distribution of galaxies.

The SD98 calculations predict a significant intergalactic absorption effect

which should cut off the spectra of Mrk 421 and Mrk _01 at energies greater

than _20 TeV. Observations of these objects at large zenith angles, which

give large effective threshold energies, may thus demon _trate the effect of in-

tergalactic absorption. The observed spectrum of Mrk 501 in the flaring phase

has now been extended to an energy of 24 TeV by observations of the HEGRA

group. Their observations appear to strongly indicate tl:e effect of extragalac-

tic absorption as predicted by SD98 (see Konopelko, these proceedings).

Finally, we consider the source PKS 2155-304, an XBL :ocated at a moderate

reshift of 0.117, which has been reported by the Durhant group to have a flux

above 0.3 TeV of -_ 4 × 10 -11 cm -2 s -1 [17], close to that predicted by a simple

SSC model [33]. Using the SD98 absorption results fo: the higher IR SED

in Figure 1 and assuming an E -2 source spectrum, we predict an absorbed

(observed) spectrum as shown in Figure 5. As indicated in the figure, we find

that this source should have its spectrum steepened b/ -_ 1 in its spectral

index between ,,_ 0.3 and ,,_ 3 TeV and should show an absorption cutoff
above ,-_ 6 TeV.
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4 Absorption of Gamma-Rays at High Redshifts

We now discuss the absorption of 10 to 500 GeV 7-rays at high redshifts.

In order to calculate such high-redshift absorption properly, it is necessary

to determine the spectral distribution of the intergalactic low energy pho-

ton background radiation as a function of redshift as realistically as possible

out to frequncies beyond the Lyman limit. This calculation, in turn, requires

observationally based information on the evolution of the spectral energy dis-

tributions (SEDs) of IR through UV starlight from galaxies, particularly at

high redshifts.

Conversely, observations of high-energy cutoffs in the */-ray spectra of blazars

as a function of redshift, which may enable one to separate out intergalactic

absorption from redshift-independent cutoff effects, could add to our knowl-

edge of galaxy formation and early galaxy evolution. In this regard, it should

be noted that the study of blazar spectra in the 10 to 300 GeV range is one

of the primary goals of a next generation space-based 7-ray telescope GLAST

(Gamma-ray Large Area Space Telescope) (Ref. [34] and Gehrels, these pro-

ceedings) as well as VERITAS and other future ground based 7-ray telescopes.

Salamon and Stacker [9] (hereafter SS98) have calculated the 7-ray opacity as a

function of both energy and redshift for redshifts as high as 3 by taking account



of the evolution of both the SED and emissivity of galaxies with redshift (see

section 4.2). In order to accomplish this, they adopted the recent analysis

of Fall, et al. [23] and also included the effects of metallicity evolution on

galactic SEDs. They then gave predicted 7-ray spectra for selected blazars and

extend our calculations of the extragalactic ")'-ray background from blazars to

an energy of 500 GeV with absorption effects included (see section 4.3). Their

results indicate that the extragalactic 7-ray background spectrum from blazars

should steepen significantly above 20 GeV, owing to extragalactic absorption.

Future observations of a such a steepening would thus provide a test of the

blazar origin hypothesis for the "r-ray background r_Aiation. The results of

the SS98 absorption calculations can be used to place limits on the redshifts

of "),-ray bursts (see section 4.4). We describe and discuss these results in the

following subsections.

4.1 Redshifl Dependence of the Intergalactic Low Energy SED

The opacity of intergalactic space to high energy ")'-rays as a function of red-

shift depends upon the number density of soft target photons (IR to UV)

as a function of redshift, photons whose production is dominated by stellar

emission. To evaluate the SED of the IR-UV intergal_.ctic radiation field we

must integrate the total stellar emissivity over time. This requires an estimate

of the dependence of stellar emissivity on redshift. Previous calculations of 7-

ray opacity have either assumed that essentially all of the background was in

place at high redshifts, corresponding to a burst of star formation at the initial

redshiff [35], [36], [31] or strong evolution [37], or that there is no evolution

[37].

Pei and Fall [38] have devised a method for calculating _tellar emissivity which

bypasses the uncertainties associated with estimates _,f poorly defined lumi-

nosity distributions of evolving galaxies. The core idea of their approach is

to relate the star formation rate directly to the evolution of the neutral gas

density in damped Ly a systems, and then to use stellar population synthesis

models to estimate the mean co-moving stellar emissivity S,,(z) of the universe

as a function of frequency u and redshift z [23]. The SS!)8 calculation of stellar

emissivity closely follows this elegant analysis, with minor modifications.

Damped Ly a systems are high-redshiff clouds of gas _hose neutral hydrogen

surface density is large enough (> 2 x 1020 cm -2) to generate saturated Ly

a absorption lines in the spectra of background quasars that happen to lie

along and behind common lines of sight to these clouds. These gas systems

are believed to be either precursors to galaxies or yourg galaxies themselves,

since their neutral hydrogen (HI) surface densities are comparable to those

of spiral galaxies today, and their co-moving number censities are consistent

8



with those of present-day galaxies [39], [40]. It is in these systems that initial

star formation presumably took place, so there is a relationship between the

mass content of stars and of gas in these clouds; if there is no infall or outflow

of gas in these systems, the systems are "closed", so that the formation of

stars must be accompanied by a reduction in the neutral gas content. Such

a variation in the HI surface densities of Ly a systems with redshift is seen,

and is used by Pei and Fall [38] to estimate the mean cosmological rate of star

formation back to redshifts as large as z = 5.

Pei and Fall [38] estimated the neutral (HI plus HeI) co-moving gas density

pc_g(z) in damped Ly a systems from observations of the redshift evolution of

these systems by Lanzetta, et al. [41]. Lanzetta, et al. have observed that while

the number density of damped Ly asystems appears to be relatively constant

over redshift, the fraction of higher density absorption systems within this class

of objects decreases steadily with decreasing redshift. They attribute this to

a reduction in gas density with time, roughly of the form f_g(z) = f_goe _,

where pc_g0 is the current gas density in galaxies. Pei and Fall have taken

account of self-biasing effects to obtain a corrected value of 9tg(z). SS98 [9]

have reproduced their calculations to obtain fig(z) under the assumptions

that the asymptotic, high redshift value of the neutral gas mass density is

f_g.i = 1.6 x 10-2ho 1, where h0 --- H0/(100 km s-SMpc-1). In a "closed galaxy"

model, the change in co-moving stellar mass density pfl_, (z) = -p_g (z), since

the gas mass density pcf_g(z) is being converted into stars. This determines

the star formation rate and consequent stellar emissivity. The rate of metal

production, 2, is related to star formation rate by 9tg_+ = ¢_/s, where ¢ =

0.38Z® is the metallicity yield averaged over the initial stellar mass function,

with Z® being the solar metallicity [38]. This gives a metallicity evolution

Z(z) = -¢ ln[aAz)lng., ].

In order to determine the mean stellar emissivity from the star formation rate,

an initial mass function (IMF) ¢(M) must be assumed for the distribution of

stellar masses M in a freshly synthesized stellar population. To further specify

the luminosities of these stars as a function of mass M and age T, Fall, Charlot,

and Pei [23] use the Bruzual-Charlot (BC) population synthesis models for

the spectral evolution of stellar populations [42], [43]. In these population

synthesis models, the specific luminosity Lst_(u, M, T), of a star of mass M and

age T is integrated over a specified IMF to obtain a total specific luminosity

S_(T) per unit mass for an entire population, in which all stellar members are

produced simultaneously (T = 0). Following Fall, Charlot, and Pei [23], SS98

used the BC model corresponding to a Salpeter IMF, ¢(M) dM o¢ M -2"3s dM,

where 0.1M® < M < 125M®. The mean co-moving emissivity E_(t) was then

obtained by convolving over time t the specific luminosity with the mean co-

moving mass rate of star formation. SS98 also obtained metallicity correction

factors for stellar radiation at various wavelengths. Increased metallicity gives

a redder population spectrum [44], [45].



SS98 calculated stellar emissivity as a function of redshift at 0.28 #m, 0.44

pm, and 1.00 #m, both with and without a metallicit _,correction. They agree

well with the emissivity obtained by the Canada-FreiLch Redshift Survey [46]

over the redshift range of the observations (z < 1).

The stellar emissivity in the universe is found to peak at 1 < z < 2, dropping

off steeply at lower reshifts and more slowly at higher redshifts. Indeed, Madau,

et al. [21] have used observational data from the Hubble Deep Field to show

that metal production has a similar redshift distrit::ution, such production

being a direct measure of the star formation rate. (See also Ref. [24]).

The co-moving radiation energy density u_(z) is the time integral of the co-

moving emissivity E_,(z), •

Zm.. , , dt , _._(,,z,z')
_=i dz E ,(z , (41

z

where v' = v(1 + z')/(1 + z) and zm_ is the redshift corresponding to ini-

tial galaxy formation. The extinction term e -_'_ acco:ants for the absorption

of ionizing photons by the clumpy intergalactic medium (IGM) that lies be-

tween the source and observer. Although the IGM is effectively transparent

to non-ionizing photons, the absorption of photons by HI, HeI and HeII can

be considerable [47].

4.2 The Gamma-Ray Opacity at High Redshifls

With the co-moving energy density u_(z) evaluated i9] (SSO8), the optical

depth for 7-rays owing to electron-positron pair production interactions with

photons of the stellar radiation background can be determined from the ex-

pression [1]

ze 2 oo

v(Eo, z,)=c dZ-_z dx-_ du(l+
0 0 0

(5)

where s = 2Eohuz(1 + z), Eo is the observed ")'-ray energy at redshift zero, r, is

the frequency at redshift z, z_ is the redshift of the-),-ray source, z = (1-cos 0),

0 being the angle between the 3,-rayand the soft background photon, h is

Planck's constant, and the pair production cross sectior _r is zero for center-

of-mass energy v G < 2m,c 2, m_ being the electron mass Above this threshold,

[¢r-rx(s) "- I_O'T(1 -- ¢321 2/3(/32 -- 2/ + (3-- 134)1n _ 1---"_) ' (6)

10



N102 _ 102 _.

10 10 2 10

8wmm* my _qlY (G.Y)

wltha_ meln|llctty (:oerQclon

10 z

o*mrr,* my _ (G.Y)

Fig. 6. The opacity r of the univers_al soft photon background to 7-rays as a function

of 7-ray energy and source redshift (from SS98) [9]. These curves are calculated with
and without a metallicity corri_ction.

where j3- (1 -4m_c4/_) 1/u.

Figure 6 shows the opacity r(E0, z) for the energy range 10 to 500 GeV,

calculated by SD98 both with and without a metallicity correction. Extinction

of "/-rays is negligible below 10 GeV.

The weak redshift dependence of the opacity at the higher redshifts as shown

in Figure 6 indicates that the opacity is not very sensitive to the initial epoch

of galaxy formation, contrary to the speculation of MacMinn and Primack

[31]. In fact, the uncertainty in the metallicity correction (see Figure 6) would

obscure any dependence on Zr_ even further.

4.3 The Effect of Absorption on the Spectra of Blazars and the Gamma-Ray

Background

With the 7-ray opacity r(E0, z) calculated out to z - 3, the cutoffs in blazar

"y-ray spectra caused by extragalactic pair production interactions with stellar

photons can be predicted. The left graph in Figure 7 from Ref. [9] (SS98)

shows the effect of the intergalactic radiation background on a few of the 7-ray

blazars ("grazars') observed by EGRET, viz., 1633+382, 3C279, 3C273, and

Mrk 421, assuming that the mean spectral indices obtained for these sources

by EGRET extrapolate out to higher energies attenuated only by intergalactic

absorption. Observed cutoffs in grazar spectra may be intrinsic cutoffs in _/-

rayproduction in the source, or may be caused by intrinsic "y-ray absorption
within the source itself.

11
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Fig. 7. The left graph shows the effect of intergalactic absolption by pair-production

on the power-law spectra of four prominent grazars: 1633+382 (z = 1.81), 3C279

(z = 0.54), 3C273 (z = 0.15),£nd Mrk 421 (z = 0.031); The right graph shows the

extragalactic 7-ray background spectrum predicted by the unresolved blazar model

of Ref. [48] with absorption included, calculated for a mean EGRETpoint-source

sensitivity of 10 -r cm-2s -1, compared with the EGRET data on the *f-ray back-

ground [49]. The solid (dashed) curves are calculated with ',without) the metallicity

correction function (from SS98 [9]).

The right hand graph in Figure 7 shows the background spectrum predicted

from unresolved blazars [48], [9] compared with the EGRET data [49]. Note

that the spectrum steepens above 20 GeV, owing to extragalactic absorption

by pair-production interactions with radiation from external galaxies, partic-

ularly at high redshifts. Above 10 GeV, blazars may have natural cutoffs in

their source spectra [33] and intrinsic absorption ma3 also be important in

some sources [50]. Thus, above 10 GeV the calculated background flux from

unresolved blazars shown in Figure 7 may actually be an upper limit. Whether

cutoffs in grazar spectra are primarily caused by intergalactic absorption can

be determined by observing whether the grazar cutoff energies have the type

of redshift dependence predicted here.

4.4 Constraints on Gamma-ray Bursts

The discovery of optical and X-ray afterglows of 7-ray bursts and the identi-

fication of host galaxies with measured redshifts, i.e., 51], [52], has lead the

accumulation of evidence that these bursts are highly re ativistic fireballs orig-

inating at cosmological distances [53] and may be asscciated primarily with

early star formation [54].

As indicated in Figure 6 7-rays above an energy of ,-- 15 GeV will be attenuated

if they at emitted at a redshift of ,-_ 3. On 17 February 1994, the EGRET

telescope observed a -y-ray burst which contained a phot( n of energy ,,- 20 GeV

12



[55].If oneadopts the opacity resultswhich include the metallicity correction,
the highest energyphoton in this burst would be constrainedto most likely
haveoriginated at a redshift lessthan ,,-2. Future detectors such as GLAST

(Ref. [34], also Gehrels, these proceedings) may be able to place better redshift

constraints on bursts observed at higher energies. Such constraints may further

help to identify the host galaxies of 7-ray bursts.

5 Appendix: Elegy to an AGN Gamma-Ray

Cast off from a dimly distant shore,

Thrown upon thy longtime voya_ge hence,

Whilst smote upon thy way, in combat doubly charged,

Of thy brave companions, the highest born

Be now vanished from amongst the world.

Lest ye fear that they be anon forgot,

I pause here, their ordained fate to fast relate,

That all about may list and mark me well,

For their absence doth their final doom well tell.
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